Tyrosine hydrogen bonds make a large contribution to protein stability

The aim of this study was to gain a better understanding of the contribution of hydrogen bonds by tyrosine -OH groups to protein stability. The amino acid sequences of RNases Sa and Sa3 are 69 % identical and each contains eight Tyr residues with seven at equivalent structural positions. We have measured the stability of the 16 tyrosine to phenylalanine mutants. For two equivalent mutants, the stability increases by 0.3 kcal/mol (RNase Sa Y30F) and 0.5 kcal/mol (RNase Sa3 Y33F) (1 kcal=4.184 kJ). For all of the other mutants, the stability decreases with the greatest decrease being 3.6 kcal/mol for RNase Sa Y52F. Seven of the 16 tyrosine residues form intramolecular hydrogen bonds and the average decrease in stability for these is 2.0(+/-1.0) kcal/mol. For the nine tyrosine residues that do not form intramolecular hydrogen bonds, the average decrease in stability is 0.4(+/-0.6) kcal/mol. Thus, most tyrosine -OH groups contribute favorably to protein stability even if they do not form intramolecular hydrogen bonds. Generally, the stability changes for equivalent positions in the two proteins are remarkably similar. Crystal structures were determined for two of the tyrosine to phenylalanine mutants of RNase Sa: Y80F (1.2 A), and Y86F (1.7 A). The structures are very similar to that of wild-type RNase Sa, and the hydrogen bonding partners of the tyrosine residues always form intermolecular hydrogen bonds to water in the mutants. These results provide further evidence that the hydrogen bonding and van der Waals interactions of polar groups in the tightly packed interior of folded proteins are more favorable than similar interactions with water in the unfolded protein, and that polar group burial makes a substantial contribution to protein stability.

Copyright 2001 Academic Press.

Similar articles

Trevino SR, Gokulan K, Newsom S, Thurlkill RL, Shaw KL, Mitkevich VA, Makarov AA, Sacchettini JC, Scholtz JM, Pace CN. Trevino SR, et al. J Mol Biol. 2005 Dec 9;354(4):967-78. doi: 10.1016/j.jmb.2005.09.091. Epub 2005 Oct 21. J Mol Biol. 2005. PMID: 16288913

Yamagata Y, Kubota M, Sumikawa Y, Funahashi J, Takano K, Fujii S, Yutani K. Yamagata Y, et al. Biochemistry. 1998 Jun 30;37(26):9355-62. doi: 10.1021/bi980431i. Biochemistry. 1998. PMID: 9649316

Pace CN, Hebert EJ, Shaw KL, Schell D, Both V, Krajcikova D, Sevcik J, Wilson KS, Dauter Z, Hartley RW, Grimsley GR. Pace CN, et al. J Mol Biol. 1998 May 29;279(1):271-86. doi: 10.1006/jmbi.1998.1760. J Mol Biol. 1998. PMID: 9636716

Pace CN. Pace CN. Biochemistry. 2001 Jan 16;40(2):310-3. doi: 10.1021/bi001574j. Biochemistry. 2001. PMID: 11148023 Review.

Privalov PL. Privalov PL. Biofizika. 1987 Sep-Oct;32(5):742-60. Biofizika. 1987. PMID: 3318936 Review. Russian.

Cited by

Dolui S, Roy A, Pal U, Kundu S, Pandit E, N Ratha B, Pariary R, Saha A, Bhunia A, Maiti NC. Dolui S, et al. ACS Phys Chem Au. 2024 Feb 15;4(3):268-280. doi: 10.1021/acsphyschemau.3c00065. eCollection 2024 May 22. ACS Phys Chem Au. 2024. PMID: 38800728 Free PMC article.

Menzikov SA, Zaichenko DM, Moskovtsev AA, Morozov SG, Kubatiev AA. Menzikov SA, et al. Front Pharmacol. 2024 Jan 18;15:1272534. doi: 10.3389/fphar.2024.1272534. eCollection 2024. Front Pharmacol. 2024. PMID: 38303988 Free PMC article. Review.

Xia CH, Liu H, Li M, Zhang H, Xing X, Gong X. Xia CH, et al. Biomedicines. 2023 Nov 29;11(12):3173. doi: 10.3390/biomedicines11123173. Biomedicines. 2023. PMID: 38137394 Free PMC article.

Potok P, Kola A, Valensin D, Capdevila M, Potocki S. Potok P, et al. Inorg Chem. 2023 Nov 13;62(45):18425-18439. doi: 10.1021/acs.inorgchem.3c02391. Epub 2023 Nov 1. Inorg Chem. 2023. PMID: 37909295 Free PMC article.

Bradley D, Hogrebe A, Dandage R, Dubé AK, Leutert M, Dionne U, Chang A, Villén J, Landry CR. Bradley D, et al. bioRxiv [Preprint]. 2023 Oct 10:2023.10.08.561337. doi: 10.1101/2023.10.08.561337. bioRxiv. 2023. PMID: 37873463 Free PMC article. Preprint.